Steam Power Generation

Pascal Tobaly

IUT de St Denis Département Génie Industriel et Maintenance (G.I.M.)

Welcome students of the international course on Power Generation Groeningen The netherlands

November 19th 2003

Outline

>A bit of history

>Basics

- > First law: Internal Energy
- Second Law: Entropy
- > Heat Engine: Thermodynamic cycle
- > Fluid flow: Enthalpy
- Liquid vapor Equilibrium: Water and Steam
 Power plants
 - > A schematic Steam Power Plant
 - Simple Rankine cycle
 - Power calculations
 - Superheating
 - > ReSuperheating
 - Back pressure turbine
 - > Regenerative cycle

A BIT OF HISTORY Hero of Alexandria: First century b.c.

A BIT OF HISTORY (Continued) Hero of Alexandria: First century b.c.

A BIT OF HISTORY (Continued) Denis PAPIN (1647- 1712)

A BIT OF HISTORY (Continued) Newcommen (1712)

A BIT OF HISTORY (Continued) Watt (1769)

First Law of Thermodynamics

Energy is a constant

If the internal energy (U) of a system increases, then it may have been increased by addition of

- → heat
- → Work

from the outer world

$$U_{2} - U_{1} = W + Q$$

Second law of Thermodynamics

- Entropy (S) of an isolated system increases
- It will eventually increase until equilibrium is reached

 If entropy decreases in a given system then entropy of the outer world must have been increased by a greater amount.
 This may be possible only because there are energy exchanges between the system and the outer world

$$\int \frac{\delta Q}{T_e} \leq S_2 - S_1$$

The equality stands for a reversible transformation

Fluid Flow and Enthalpy

Fluid flowing through a machine

$$h_2 - h_1 + \frac{V_2^2}{2} - \frac{V_1^2}{2} = w_u + q$$

$$h =$$
specific enthalpy

V =Velocity W =Usable work per

 w_u = Usable work per unit mass of fluid q = Heat per unit mass of fluid

In terms of Power:

$$\dot{m}(h_2 - h_1 + \frac{V_2^2}{2} - \frac{V_1^2}{2}) = \dot{W} + \dot{Q}$$

HEAT ENGINE THERMODYNAMIC CYCLE

Liquid - vapour equilibrium

Vapour pressure curve

Data on the internet

NIST Webbook

http://webbook.nist.gov/chemistry/

Many physical properties including saturation properties as a function of Temperature and superheated vapor properties.

Page of this department

http://www-gim.iut-stdenis.univparis13.fr/thermo/thermo.html

Steam Turbine

Steam Turbine Rotor

Rankine cycle (Wet)

Energy and power calculations

Isentropic efficiency

Is not an efficiency

H 1

 ratio of real work to ideal (isentropic) one (with same final pressure)

Mollier diagram

Rankine Cycle with superheat

Sometimes called Hirn Cycle

Rankine cycle + superheat

Hot reservoir $q_c = q_{boiler} + q_{superheater} = h_B - h_D + h_B' - h_B = h_B' - h_D$

The reheat cycle

Double stage expansion in double stage turbines

Superheat again before the second expansion

Energy

The regenerative cycle

Extract a fraction of the vapor before complete expansion
Partially heat the feeding water with that vapor

Regenerative cycle (continued)

Back-pressure turbine

Combined Heat and Power (CHP) Or cogeneration

Heat
$$q = h_{D'} - h_{C'}$$
 usable

While
$$q = h_{C''} - h_D$$

would not be usable

Primary energy sources At the boiler:

- Traditional
- Nuclear
- Oil
- Coal
- Natural gas

- Renewable
- Solar (concentration)
- Geothermal
- Biomass
- Waste enhancement

Radiation Concentration

- Paraboloiidic mirors
- Cylindro-parabolic mirors
- Miror fields
- Advantages
 - High temperatures
 - Thermodynamic cycles
 - Rankine cycle
 - Stirling cycle

Concentration

- Four Solaire
- Odeillo (Pyrénées)

Centrale Thémis (Pyrénées)

Solar two (U.S.A.)

Solar Two

Centrale à tour

Concentration

Cylindro-parabolic mirors

Alméria (espagne)

Installing pipe at the focus

Geothermal energy

- High temperature (>150°C)
 - Vapour \rightarrow thermodynamic cycles
 - Combined heat and power
- Medium Températures (<150°C)
 - Urban heating
 - Pump heat exchanger reinject
- Low temperatures
 - Geothermal heat pump

Géothermie

- Geothermal gradient
- Aqueous reservoirs

Animation geo_anim_01.html

Geyser (Islande)

Géothermie en France

The main project steps

	1987 – 1991	1991 – 1998	1999 – 2007 2007 – 2009
	Exploration	Creation of the 2 wells	Creation of the 3 wells system Construction of the first
	phase	system GPK1/GPK2 at - 3600 m	GPK2/GPK3/GPK4 at - 5000 m 1.5 MWe
•	Drilling GPK1 at - 2000 m	 Deepening of GPK1 at - 3600 m and stimulation 	 Deepening of GPK2 at 5080 m and stimulation Installation of surface equipment (turbine and generator, heat exchangers)
•	Coring EPS1 at - 2227 m	 Drilling of GPK2 at - 3880 m and stimulation 	 Drilling of GPK3 at - 5100 m and stimulation Installation of the LSP
		• Circulation test between the 2 wells (4 months)	 Drilling of GPK4 at 5270 m and stimulation Circulation test between the 2 Inauguration of the power plant 13.06.2008
			 Circulation test between the 5 wells (5 months) Complementation of the ESP in GPK4 at - 500m
			• Complementary stimulations (chemical)
<	← →	<>	<
r 1987	- 1988 - 1989 - 1990 - 1991	- 1992 - 1993 - 1995 - 1996 - 1998	- 1999 - 2000 - 2001 - 2005 - 2005 - 2006 - 2006 - 2006 - 2006 - 2006 - 2007 - 2008

Circulation test in 1997

Upper reservoir: 2800-3600 m

Test duration: 4 months

Production temperature: 140°C

Thermal output: 10 MWth

No fluid losses

Binary Cycle: RANKINE

The Soultz power plant

Deep temperatures in Europe

That's all Folks

