
Correction du DS Transferts thermiques du 05 12 2003

Pascal Tobaly IUT de St Denis Génie industriel et Maintenance

La figure ci-dessous donne un schéma en coupe et précise les notations :

Conseil: Un grand nombre de vos erreurs est dû à une lecture trop hâtive du sujet. Prenez bien le temps de lire et de comprendre avant de vous lancer dans les calculs. Par exemple: Le diamètre intérieur était donné. Il fallait en déduire un rayon de $r_1 = 100 \, mm$ et non 200. L'épaisseur du tuyau étant de 7mm, le rayon extérieur du tuyau était de $r_2 = 107mm$. Enfin le rayon extérieur de l'isolant était de $r_3 = 157 \, mm$.

1°) Dans ces conditions et pour cette géométrie cylindrique, les résistances thermiques successives en allant du centre vers la périphérie s'écrivent :

Résistance thermique de conduction intérieure :

$$R_{T_1} = \frac{1}{2\pi r_1 h_i l} = 0,0159 \, K/W$$

Résistance thermique de conduction dans le tuyau métallique :

$$R_{T_2} = \frac{1}{2\pi\lambda_1 l} \ln \frac{r_2}{r_1} = 2,39.10^{-4} \, K/W$$

Résistance thermique de conduction à travers l'isolant :

$$R_{T_3} = \frac{1}{2\pi\lambda_2 l} \ln \frac{r_3}{r_2} = 1,53 \, K/W$$

Résistance thermique de convection à la surface extérieure de l'isolant :

$$R_{T_4} = \frac{1}{2\pi r_3 h_e l} = 0,1014 \, K/W$$

On peut remarquer que la résistance thermique de conduction dans le tuyau R_{T_2} est négligeable devant les autres et que la plus importante est celle de l'isolant.

2°) Ces quatres résistances étant en série par rapport au flux de chaleur qui les traverse, la résistance totale est donnée par la somme :

$$R_T = R_{T_1} + R_{T_2} + R_{T_3} + R_{T_4} = 1,643 \, K/W$$

Le flux est alors donné par :

$$\phi_1 = \frac{T_i - T_e}{R_T} = 79,12 \, W$$

où T_i et T_e sont respectivement la température intérieure et extérieure.

3°) Lorsque l'isolant n'est plus présent, la résistance R_{T_3} s'annule tandis que la valeur de R_{T_4} change car la surface où a lieu l'échange convectif est celle du tuyau. En revanche, les 2 résistances R_{T_1} et R_{T_2} ne changent pas. La nouvelle valeur de R_{T_4} est donnée par :

$$R'_{T_4} = \frac{1}{2\pi r_2 h_e l} = 0,1487 \, K/W$$

notez que la résistance augmente car la surface diminue, ce qui limite le flux pour une même différence de température.

4°) La nouvelle résistance totale a fortement diminué :

$$R'_{T} = R_{T_1} + R_{T_2} + R'_{T_4} = 0,1649 \, K/W$$

Le flux devient alors:

$$\phi_2 = \frac{T_i - T_e}{R_T'} = 788,37 \, W$$

Le flux est beaucoup plus important sans isolant, ce qui justifie l'isolation.

5°) Pour calculer la température de surface T_{s_e} , une fois le flux connu, il suffit de ne considérer que la résistance de convection extérieure. on a alors :

$$T_{s_e} - T_e = R_{T_4} \phi_1$$

ce qui donne :

$$T_{s_e} = T_e + R_{T_4} \phi_1 = 28,02^{\circ} C$$

Il est donc possible de poser le film plastique au dessus de l'isolant puisque $T_{s_e} < 30^{\circ}C$.

6°) On procèdera de la même manière sans isolant. On a cette fois-ci:

$$T'_{s_e} = T_e + R'_{T_4}\phi_2 = 137,26^{\circ}C$$

On voit que dans ce cas la pose du film plastique est hors de question.

tableau des valeurs

R_1	R_2	R_3	R_4	R totale	ϕ	T_{ext}
K/W	K/W	K/W	K/W	K/W	W	$^{\circ}\mathrm{C}$
0, 159	$2.39 \ 10^{-4}$	1,53	0, 1014	1,643	79, 12	28,02
0, 159	$2.39 \ 10^{-4}$	0	0,1487	0, 1649	788, 37	137, 26